Rss Feed Facebook Twitter Google Plus


viernes, 7 de junio de 2013

MODELO COMPUTACIONAL DISCRETO


MODELO COMPUTACIONAL DISCRETO (PRESENTACIÓN)








Ejemplo de modelado del comportamiento dinámico de un altavoz 









Read more

lunes, 6 de mayo de 2013

LEYES DE KIRCHHOFF

                                          

LEYES DE KIRCHHOFF

Las leyes (o Lemas) de Kirchhoff fueron formuladas por Gustav Kirchhoff en 1845, mientras aún era estudiante. Son muy utilizadas en ingeniería eléctrica para obtener los valores de la corriente y el potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía.
Estas leyes nos permiten resolver los circuitos utilizando el conjunto de ecuaciones al que ellos responden. En la lección anterior Ud. conoció el laboratorio virtual LW. El funcionamiento de este y de todos los laboratorios virtuales conocidos se basa en la resolución automática del sistema de ecuaciones que genera un circuito eléctrico. Como trabajo principal la PC presenta una pantalla que semeja un laboratorio de electrónica pero como trabajo de fondo en realidad esta resolviendo las ecuaciones matemáticas del circuito. Lo interesante es que lo puede resolver a tal velocidad que puede representar los resultados en la pantalla con una velocidad similar aunque no igual a la real y de ese modo obtener gráficos que simulan el funcionamiento de un osciloscopio, que es un instrumento destinado a observar tensiones que cambian rápidamente a medida que transcurre el tiempo.
En esta entrega vamos a explicar la teoría en forma clásica y al mismo tiempo vamos a indicar como realizar la verificación de esa teoría en el laboratorio virtual LW.
La primera Ley de Kirchoff
En un circuito eléctrico, es común que se generen nodos de corriente. Un nodo es el punto del circuito donde se unen mas de un terminal de un componente eléctrico. Si lo desea pronuncie “nodo” y piense en “nudo” porque esa es precisamente la realidad: dos o mas componentes se unen anudados entre sí (en realidad soldados entre sí). En la figura 1 se puede observar el mas básico de los circuitos de CC (corriente continua) que contiene dos nodos.
Fig.1 Circuito básico con dos nodos
Fig.1 Circuito básico con dos nodos
Observe que se trata de dos resistores de 1Kohms (R1 y R2) conectados sobre una misma batería B1. La batería B1 conserva su tensión fija a pesar de la carga impuesta por los dos resistores; esto significa cada resistor tiene aplicada una tensión de 9V sobre él. La ley de Ohms indica que cuando a un resistor de 1 Kohms se le aplica una tensión de 9V por el circula una corriente de 9 mA
I = V/R = 9/1.000 = 0,009 A = 9 mA
Por lo tanto podemos asegurar que cada resistor va a tomar una corriente de 9mA de la batería o que entre ambos van a tomar 18 mA de la batería. También podríamos decir que desde la batería sale un conductor por el que circulan 18 mA que al llegar al nodo 1 se bifurca en una corriente de 9 mA que circula por cada resistor, de modo que en el nodo 2 se vuelven a unir para retornar a la batería con un valor de 18 mA.
Fig.2 Aplicación de la primera ley de Kirchoff
Fig.2 Aplicación de la primera ley de Kirchoff
Es decir que en el nodo 1 podemos decir que
I1 = I2 + I3
y reemplazando valores: que
18 mA = 9 mA + 9 mA
y que en el nodo 2
I4 = I2 + I3
Es obvio que las corriente I1 e I4 son iguales porque lo que egresa de la batería debe ser igual a lo que ingresa.
Simulación de la primera Ley de Kirchoff
Inicie el LW. Dibuje el circuito de la figura 2. Luego pulse la tecla F9 de su PC para iniciar la simulación. Como no se utilizó ningún instrumento virtual no vamos a observar resultados sobre la pantalla. Pero si Ud. pulsa sobre la solapa lateral marcada Current Flow observará un dibujo animado con las corrientes circulando y bifurcándose en cada nodo.
Para conocer el valor de la corriente que circula por cada punto del circuito y la tensión con referencia al terminal negativo de la batería, no necesita conectar ningún instrumento de medida. Simplemente acerque la flecha del mouse a los conductores de conexión y el LW generará una ventanita en donde se indica V e I en ese lugar del circuito. Verifique que los valores de corriente obtenidos anteriormente son los correctos.
Para detener la simulación solo debe pulsar las teclas Control y F9 de su PC al mismo tiempo.
Enunciado de la primera Ley de Kirchoff
La corriente entrante a un nodo es igual a la suma de las corrientes salientes. Del mismo modo se puede generalizar la primer ley de Kirchoff diciendo que la suma de las corrientes entrantes a un nodo son iguales a la suma de las corrientes salientes.
La razón por la cual se cumple esta ley se entiende perfectamente en forma intuitiva si uno considera que la corriente eléctrica es debida a la circulación de electrones de un punto a otro del circuito. Piense en una modificación de nuestro circuito en donde los resistores tienen un valor mucho mas grande que el indicado, de modo que circule una corriente eléctrica muy pequeña, constituida por tan solo 10 electrones que salen del terminal positivo de la batería. Los electrones están guiados por el conductor de cobre que los lleva hacia el nodo 1. Llegados a ese punto los electrones se dan cuenta que la resistencia eléctrica hacia ambos resistores es la misma y entonces se dividen circulando 5 por un resistor y otros 5 por el otro. Esto es totalmente lógico porque el nodo no puede generar electrones ni retirarlos del circuito solo puede distribuirlos y lo hace en función de la resistencia de cada derivación. En nuestro caso las resistencias son iguales y entonces envía la misma cantidad de electrones para cada lado. Si las resistencias fueran diferentes, podrían circular tal ves 1 electrón hacia una y nueve hacia la otra de acuerdo a la aplicación de la ley de Ohm.
Mas científicamente podríamos decir, que siempre se debe cumplir una ley de la física que dice que la energía no se crea ni se consume, sino que siempre se transforma. La energía eléctrica que entrega la batería se subdivide en el nodo de modo que se transforma en iguales energías térmicas entregadas al ambiente por cada uno de los resistores. Si los resistores son iguales y están conectados a la misma tensión, deben generar la misma cantidad de calor y por lo tanto deben estar recorridos por la misma corriente; que sumadas deben ser iguales a la corriente entregada por la batería, para que se cumpla la ley de conservación de la energía.
En una palabra, que la energía eléctrica entregada por la batería es igual a la suma de las energías térmicas disipadas por los resistores. El autor un poco en broma suele decir en sus clases. Como dice el Martín Fierro, todo Vatio que camina va a parar al resistor. Nota: el Vatio es la unidad de potencia eléctrica y será estudiado oportunamente.
Segunda Ley de Kirchoff
Cuando un circuito posee mas de una batería y varios resistores de carga ya no resulta tan claro como se establecen la corrientes por el mismo. En ese caso es de aplicación la segunda ley de kirchoff, que nos permite resolver el circuito con una gran claridad.
En un circuito cerrado, la suma de las tensiones de batería que se encuentran al recorrerlo siempre serán iguales a la suma de las caídas de tensión existente sobre los resistores.
En la figura siguiente  se puede observar un circuito con dos baterías que nos permitirá resolver un ejemplo de aplicación.
Fig.3. Circuito de aplicación de la segunda ley de Kirchoff
Fig.3. Circuito de aplicación de la segunda ley de Kirchoff
Observe que nuestro circuito posee dos baterías y dos resistores y nosotros deseamos saber cual es la tensión de cada punto (o el potencial), con referencia al terminal negativo de B1 al que le colocamos un símbolo que representa a una conexión a nuestro planeta y al que llamamos tierra o masa. Ud. debe considerar al planeta tierra como un inmenso conductor de la electricidad.
Las tensiones de fuente, simplemente son las indicadas en el circuito, pero si pretendemos aplicar las caídas de potencial en los resistores, debemos determinar primero cual es la corriente que circula por aquel. Para determinar la corriente, primero debemos determinar cual es la tensión de todas nuestras fuentes sumadas. Observe que las dos fuentes están conectadas de modos que sus terminales positivos están galvánicamente conectados entre si por el resistor R1. esto significa que la tensión total no es la suma de ambas fuentes sino la resta. Con referencia a tierra, la batería B1 eleva el potencial a 10V pero la batería B2 lo reduce en 1 V. Entonces la fuente que hace circular corriente es en total de 10 – 1 = 9V . Los electrones que circulan por ejemplo saliendo de B1 y pasando por R1, luego pierden potencial en B2 y atraviesan R2. Para calcular la corriente circulante podemos agrupar entonces a los dos resistores y a las dos fuentes tal como lo indica la figura siguiente.
Fig.4 Reagrupamiento del circuito
Fig.4 Reagrupamiento del circuito
¿El circuito de la figura 4 es igual al circuito de la figura 3? No, este reagrupamiento solo se genera para calcular la corriente del circuito original. De acuerdo a la ley de Ohms
I = Et/R1+R2
porque los electrones que salen de R1 deben pasar forzosamente por R2 y entonces es como si existiera un resistor total igual a la suma de los resistores
R1 + R2 = 1100 Ohms
Se dice que los resistores están conectados en serie cuando están conectados de este modo, de forma tal que ambos son atravesados por la misma corriente igual a
I = (10 – 1) / 1000 + 100 = 0,00817 o 8,17 mA
Ahora que sabemos cual es la corriente que atraviesa el circuito podemos calcular la tensión sobre cada resistor. De la expresión de la ley de Ohm
I = V/R
se puede despejar que
V = R . I
y de este modo reemplazando valores se puede obtener que la caída sobre R2 es igual a
VR2 = R2 . I = 100 . 8,17 mA = 817 mV
y del mismo modo
VR1 = R1 . I = 1000 . 8,17 mA = 8,17 V
Estos valores recién calculados de caídas de tensión pueden ubicarse sobre el circuito original con el fin de calcular la tensión deseada.
Fig.5 Circuito resuelto
Fig.5 Circuito resuelto
Observando las cuatro flechas de las tensiones de fuente y de las caídas de tensión se puede verificar el cumplimiento de la segunda ley de Kirchoff, ya que comenzando desde la masa de referencia y girando en el sentido de las agujas del reloj podemos decir que
10V – 8,17V – 1V – 0,817 = 0 V
o realizando una transposición de términos y dejando las fuentes a la derecha y las caídas de tensión a la izquierda podemos decir que la suma de las tensiones de fuente
10V – 1V =  8,17V + 0,817 = 8,987 = 9V
Y además podemos calcular fácilmente que la tensión sobre la salida del circuito es de
0,817V + 1V = 1,817V
con la polaridad indicada en el circuito es decir positiva.


Ley de corrientes de Kirchhoff

http://upload.wikimedia.org/wikipedia/commons/6/69/KCL.png
http://bits.wikimedia.org/static-1.22wmf1/skins/common/images/magnify-clip.png
La corriente que pasa por un nodoes igual a la corriente que sale del mismo. i1 + i4 = i2 + i3
Esta ley también es llamada ley de nodos o primera ley de Kirchhoff y es común que se use la sigla LCK para referirse a esta ley. La ley de corrientes de Kirchhoff nos dice que:
En cualquier nodo, la suma de las corrientes que entran en ese nodo es igual a la suma de las corrientes que salen. De forma equivalente, la suma de todas las corrientes que pasan por el nodo es igual a cero
\sum_{k=1}^n I_k = I_1 + I_2 + I_3\dots + I_n = 0
Esta fórmula es válida también para circuitos complejos:
\sum_{k=1}^n \tilde{I}_k = 0
La ley se basa en el principio de la conservación de la carga donde la carga en couloumbs es el producto de la corriente en amperios y el tiempo en segundos.

Densidad de carga variante

La LCK sólo es válida si la densidad de carga se mantiene constante en el punto en el que se aplica. Considere la corriente entrando en una lámina de un capacitor. Si uno se imagina una superficie cerrada alrededor de esa lámina, la corriente entra a través del dispositivo, pero no sale, violando la LCK. Además, la corriente a través de una superficie cerrada alrededor de todo el capacitor cumplirá la LCK entrante por una lámina sea balanceada por la corriente que sale de la otra lámina, que es lo que se hace en análisis de circuitos, aunque cabe resaltar que hay un problema al considerar una sola lámina. Otro ejemplo muy común es la corriente en una antena donde la corriente entra del alimentador del transmisor pero no hay corriente que salga del otro lado.
Maxwell introdujo el concepto de corriente de desplazamiento para describir estas situaciones. La corriente que fluye en la lámina de un capacitor es igual al aumento de la acumulación de la carga y además es igual a la tasa de cambio del flujo eléctrico debido a la carga (el flujo eléctrico también se mide en Coulombs, como una carga eléctrica en el SIU). Esta tasa de cambio del flujo \psi \ , es lo que Maxwell llamó corriente de desplazamiento I_\mathrm D:
I_\mathrm D = \frac {d \psi}{d t}
Cuando la corriente de desplazamiento se incluye, la ley de Kirchhoff se cumple de nuevo. Las corrientes de desplazamiento no son corrientes reales debido a que no constan de cargas en movimiento, deberían verse más como un factor de corrección para hacer que la LCK se cumpla. En el caso de la lámina del capacitor, la corriente entrante de la lámina es cancelada por una corriente de desplazamiento que sale de la lámina y entra por la otra lámina.
Esto también puede expresarse en términos del vector campo al tomar la Ley de Ampere de la divergencia con la corrección de Maxwell y combinando la ley de Gauss, obteniendo:
\nabla \cdot \mathbf{J} = -\nabla \cdot \frac{\partial \mathbf{D}}{\partial t} = -\frac{\partial \rho}{\partial t}
Esto es simplemente la ecuación de la conservación de la carga (en forma integral, dice que la corriente que fluye a través de una superficie cerrada es igual a la tasa de pérdida de carga del volumen encerrado (Teorema de Divergencia). La ley de Kirchhoff es equivalente a decir que la divergencia de la corriente es cero, para un tiempo invariante p, o siempre verdad si la corriente de desplazamiento está incluida en J.

 

 

Ley de tensiones de Kirchhoff

http://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Kirchhoff_voltage_law.svg/250px-Kirchhoff_voltage_law.svg.png
http://bits.wikimedia.org/static-1.22wmf1/skins/common/images/magnify-clip.png
Ley de tensiones de Kirchhoff, en este caso v4= v1+v2+v3. No se tiene en cuenta a v5 porque no forma parte de la malla que estamos analizando.
Esta ley es llamada también Segunda ley de Kirchhoff, ley de lazos de Kirchhoff o ley de mallas de Kirchhoff y es común que se use la sigla LVK para referirse a esta ley.
En un lazo cerrado, la suma de todas las caídas de tensión es igual a la tensión total suministrada. De forma equivalente, la suma algebraica de las diferencias de potencial eléctrico en un lazo es igual a cero.
 \sum_{k=1}^n V_k = V_1 + V_2 + V_3\dots + V_n = 0
De igual manera que con la corriente, los voltajes también pueden ser complejos, así:
\sum_{k=1}^n \tilde{V}_k = 0
Esta ley se basa en la conservación de un campo potencial de energía. Dado una diferencia de potencial, una carga que ha completado un lazo cerrado no gana o pierde energía al regresar al potencial inicial.
Esta ley es cierta incluso cuando hay resistencia en el circuito. La validez de esta ley puede explicarse al considerar que una carga no regresa a su punto de partida, debido a la disipación de energía. Una carga simplemente terminará en el terminal negativo, en vez de el positivo. Esto significa que toda la energía dada por la diferencia de potencial ha sido completamente consumida por la resistencia, la cual la transformará en calor. Teóricamente, y, dado que las tensiones tienen un signo, esto se traduce con un signo positivo al recorrer un circuito desde un mayor potencial a otro menor, y al revés: con un signo negativo al recorrer un circuito desde un menor potencial a otro mayor.
En resumen, la ley de tensión de Kirchhoff no tiene nada que ver con la ganancia o pérdida de energía de los componentes electrónicos (Resistores, capacitores, etc. ). Es una ley que está relacionada con el campo potencial generado por fuentes de tensión. En este campo potencial, sin importar que componentes electrónicos estén presentes, la ganancia o pérdida de la energía dada por el campo potencial debe ser cero cuando una carga completa un lazo.

Campo eléctrico y potencial eléctrico

La ley de tensión de Kirchhoff puede verse como una consecuencia del principio de la conservación de la energía. Considerando ese potencial eléctrico se define como una integral de línea, sobre un campo eléctrico, la ley de tensión de Kirchhoff puede expresarse como:
\oint_C \mathbf{E} \cdot d\mathbf{l} = 0,
Que dice que la integral de línea del campo eléctrico alrededor de un lazo cerrado es cero.
Para regresar a una forma más especial, esta integral puede "partirse" para conseguir el voltaje de un componente en específico.
Caso práctico
Asumiendo una red eléctrica consistente en dos fuentes y tres resistencias, disponemos la siguiente resolución:
Kirshhoff-example.svg
De acuerdo con la primera ley de Kirchhoff (ley de los nodos), tenemos:
 i_1 - i_2 - i_3 = 0 \,
La segunda ley de Kirchhoff (ley de las mallas), aplicada a la malla según el circuito cerrado s1, nos hace obtener:
R_2 i_2 - \epsilon_1 + R_1 i_1 = 0
La segunda ley de Kirchhoff (ley de las mallas), aplicada a la malla según el circuito cerrado s2, por su parte:
R_3 i_3 + \epsilon_2 + \epsilon_1 - R_2 i_2 = 0
Debido a lo anterior, se nos plantea un sistema de ecuaciones con las incógnitas  i_1, i_2, i_3:
\begin{cases}
i_1 - i_2 - i_3 & = 0 \\
R_2 i_2 - \epsilon_1 + R_1 i_1 & = 0 \\
R_3 i_3 + \epsilon_2 + \epsilon_1 - R_2 i_2 & = 0 \\
\end{cases}
Dadas las magnitudes:
R_1 = 100,\ R_2 = 200,\ R_3 = 300,\ \epsilon_1 = 3,\ \epsilon_2 = 4
,
la solución definitiva sería:
\begin{cases}
i_1 = \frac {1} {1100} \\
i_2 = \frac {4} {275} \\
i_3 = - \frac {3} {220} \\
\end{cases}
Se puede observar que i_3 tiene signo negativo, lo cual significa que la dirección de i_3 es inversa respecto de lo que hemos asumido en un principio (la dirección de i_3 -en rojo- definida en la imagen).



Read more

miércoles, 3 de abril de 2013

EJERCICIOS DEL TALLER







Read more

viernes, 1 de marzo de 2013

Modelos de Parámetros Distribuidos y Concentrados


Read more

Modelos Físicos y Matemáticos.



Modelos Físicos son aquellos en que la realidad es representada por algo tangible, construido en escala o que por lo menos se comporta en forma análoga a esa realidad, por el contrario los modelos matemáticos representan la realidad en forma abstracta de muy diversas maneras:
Ejemplos:
Modelos físicos: maquetas, prototipos, modelos analógicos, etc.
Read more

Modelos Continuos, Discretos y de Eventos Discretos.



Modelos Continuos son aquellos en los que las variables de estado cambian instantáneamente en instantes separados de tiempo. Por el contrario, los modelos discretos las variables de estado cambian de forma continua con el paso del tiempo.
Ejemplos:
Modelos continuos: avión en vuelo (posición, velocidad, etc.)
Modelos discretos: número de clientes en el banco.
Read more

Modelos Estocásticos y Deterministas.



Los modelos determinísticos son aquellos donde se supone que los datos se conocen con certeza, es decir, se supone que cuando el modelo sea analizado se tiene disponible toda la información necesaria para la toma de decisiones. 
Por el contrario, en los modelos estocásticos también conocidos como modelos probabilísticos, algún elementó no se conoce con anticipación, incorporando así la incertidumbre.

Ejemplos
Modelos determinísticos: la planificación de una línea de producción, asignación de las salas de clases en una universidad.
Modelos estocásticos: filas de espera, administración de proyectos y pronóstico.
Read more

MODELOS ESTÁTICOS Y DINAMICOS



Los modelos estáticos son aquellos caracterizados por representar un sistema en un punto particular del tiempo. Por el contrario, los modelos dinámicos se caracterizan por el cambio que presentan las variables en función del tiempo.

Modelos dinámicos: La evolución de una población P puede describirse mediante modelos dinámicos

Ejemplo.
Modelos estáticos:
  •  E = m c^2 (materia en energía)
  • Costo para cantidad de camas reservadas (en un hospital)
  • Un mapa topográfico representa el relieve en un momento determinado; los procesos geológicos que lo generaron no se modelan, sólo se modela el resultado

Read more

MODELOS ABIERTOS Y CERRADOS




MODELOS ABIERTOS Y CERRADOS 

Los modelos abiertos son aquellos donde la salida no tiene efecto sobre la acción de control. Por el contrario, los modelos cerrados son aquellos donde la señal de salida tiene efecto sobre la acción de control. 
Read more

modelos concreto y modelos abstractos


Los Modelos concretos y  modelos Abstractos

son modelos físicos que tienen características comunes o idénticas con la realidad que se quiere modelar. Por el contrario los modelos Abstractos, al contrario que los modelos concretos, no tiene características físicas comunes con el original.

 Ejemplos:

Modelos concretos: la maqueta de un edificio, los dispositivos o procesos reales que se comportan de igual forma al fenómeno del cual se tomó el modelo y del que se espera aprender algo.

Modelos abstractos: mapas de carreteras, el velocímetro de un automóvil, diagramas de representación, etc.
Read more
 

Blogger news

Blogroll

upc

modelos